Министерство образования и науки Республики Татарстан Государственное автономное профессиональное образовательное учреждение «Актанышский технологический техникум»

КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА УЧЕБНОЙ ДИСЦИПЛИНЫ

ЕН.02 ДИСКРЕТНАЯ МАТЕМАТИКА С ЭЛЕМЕНТАМИ МАТЕМАТИЧЕСКОЙ ЛОГИКИ

код и наименование дисциплины

для специальности

09.02.07 ИНФОРМАЦИОННЫЕ СИСТЕМЫ И ПРОГРАММИРОВАНИЕ

код и наименование специальности

Контрольно-оценочные средства учебной дисциплины разработана на основе Федерального государственного образовательного стандарта среднего профессионального образования по специальности 09.02.07 Информационные системы и программирование

Организация разработчик:

Государственное автономное профессиональное образовательное учреждение ГАПОУ «Актанышский технологический техникум» (ГАПОУ «АТТ»)

Разработчик:

Анварова Э.Ф., преподаватель ГАПОУ «АТТ»

СОДЕРЖАНИЕ

1.	ПАСПОРТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИ	1HE
	4	
2.	СТРУКТУРА И ПЕРЕЧЕНЬ КОНТРОЛЬНО-ОЦЕНОЧНЫХ МАТЕРИАЛОВ	5
3.	ПЕРЕЧЕНЬ МАТЕРИАЛОВ, ОБОРУДОВАНИЯ И ИНФОРМАЦИОННЫХ	8
ИС	ТОЧНИКОВ	8

1. ПАСПОРТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

1.1 Общие положения

Фонд оценочных средств (ФОС) предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины ЕН.02.«Дискретная математика с элементами математической логики».

В соответствии с учебным планом, дисциплина ЕН.02«Дискретная математика с элементами математической логики» изучается в течение двух семестров. Формой промежуточной аттестации по окончании всего курса является экзамен

КОС разработан на основании программы подготовки специалиста среднего звена по специальности 09.02.07 Информационные системы и программирование.

1.2 Результаты освоения дисциплины, подлежащие проверке

В ходе аттестации по дисциплине осуществляется проверка следующих умений, знаний и формирования общих компетенций

- OК 1 Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам.
- ОК 2. Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности.
- ОК 4. Работать в коллективе и команде, эффективно взаимодействовать с коллегами, руководством, клиентами.
- OК 5. Осуществлять устную и письменную коммуникацию на государственном языке с учетом особенностей социального и культурного контекста.
- ОК 9. Использовать информационные технологии в профессиональной леятельности.

OK 10. Пользоваться профессиональной документацией на государственном и иностранном языках.

Код	Умения	Знания				
OK 1	- применять логические операции,	-основные принципы математической				
OK 2	формулы логики, законы алгебры	логики, теории множеств и теории				
OK 4	логики;	алгоритмов;				
OK 5	-формулировать задачи	-формулы алгебры высказываний;				
OK 9	логического характера и	-методы минимизации алгебраических				
OK 10	применять средства	преобразований; -основы языка и алгебры предикатов; -основные принципы теории множеств.				
	решения.					

1.3 Критерии оценки знаний и умений

Билет состоит из шести задач по основным темам дискретной математики.

Оценка «отлично» ставится при полном ответе на билет. Возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые студент легко исправил по замечанию преподавателя.

Оценка «хорошо» ставится, если студент ответил на весь билет с небольшими ошибками или недочётами, легко исправленные по замечанию преподавателя.

Оценка «удовлетворительно» ставится, если неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса, допущены

ошибки в определении понятий; студент не справился с применением теории в новой ситуации при выполнении практического задания.

Оценка «неудовлетворительно» ставится, если не раскрыто основное содержание учебного материала; допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов преподавателя.

2. СТРУКТУРА И ПЕРЕЧЕНЬ КОНТРОЛЬНО-ОЦЕНОЧНЫХ МАТЕРИАЛОВ

Вопросы и задания

- 2.1 Теоретические вопросы
- 1.Основные понятия и определения теории множеств
- 2. Способы задания множеств
- 3. Множества точек на плоскости
- 4.Отношения в множествах. Подмножества
- 5. Равенство множеств
- 6. Мошность множества
- 7. Степень множества (булеан). Теорема Кантора
- 8. Операции над множествами и их свойства. Диаграммы Эйлера-Венна
- 9.Объединение множеств
- 10. Пересечение множеств
- 11. Разность множеств
- 12.Основные тождества алгебры множеств
- 13. Законы де Моргана
- 14. Разбиение множества на классы
- 15. Прямое произведение множеств
- 16.Отношение эквивалентности
- 17.Отношение порядка
- 18.Простейшие комбинаторные конфигурации
- 19. Размещения
- 20.Перестановки
- 21.Сочетания
- 22. Размещения и сочетания с повторением
- 23. Бином Ньютона. Треугольник Паскаля
- 24. Логические операции. Формулы логики
- 25. Законы логики. Равносильные преобразования
- 26. Таблицы истинности
- 27. Булевы функции
- 28. Двойственные функции. Принцип двойственности функций
- 29. Методы упрощения булевых функций
- 30. Операция двоичного сложения. Многочлен Жегалкина
- 31. Предикат. Операции над предикатами
- 32.Основные положения теории графов
- 33. Маршруты и пути в неориентированных и ориентированных графах
- 34.Связность графов
- 35. Эйлеровы графы
- 36.Деревья и взвешенные графы
- 37.Изоморфизм графов

Тест по теме «Элементы теории множеств» Вариант 1 1. Множество, не содержащее ни одного элемента, называется: 3) бесконечным; нулевым;
 пустым; 4) безэлементным. <u>2.Множество решений уравнения</u> $x^2 + x - 6 = 0$ <u>записывается:</u> 1) (2;-3); 2) (3;-2); 3) {2,-3}; $4)\{-2,3\}.$ 3. Множество решений неравенства (x-1)(x+2) > 0 записывается в виде: $2)(-\infty;-2)\cup(1;+\infty);$ 3) (1;-2); 4) $(-\infty; -1) \cup (2; +\infty)$. 1) (-2;1); 4. Правильная запись предложения «Y – множество действительных чисел, больших 3» -ЭТО 1) $Y = \{R | y > 3\};$ 2) $Y = \{y \in Q | y > 3\};$ 3) $Y = \{y \in R | y > 3\}$; 4) $Y = \{y | y \in \mathbb{R}, y > 3\}.$ 5. Для множеств $A = \{-3,5,8\}$ и $B = \{1,5,9\}$ справедливы утверждения: 1) $A \cap B = \emptyset$; 2) A = B; 3) $A \setminus B = \{-3,8\}$; 4) $A \cup B = A$. 6.Не пересекаются множества чисел: 1) простых и нечетных; 2) простых и четных; 3) простых и составных; 4) составных и нечетных. 7. Пересечение множеств прямоугольников и ромбов — это множество 1)квадратов; 2) параллелограммов; 3) прямоугольников; 4) пустое множество. 8. Мощность множества $A=\{-3,0,2,5,13\}$ равна: 1) 0; **2**) **5**; 3) 13; 4) 2. 9. Декартово произведение множеств $A=\{-1,2\}$ и $B=\{0,-3\}$ — это 1) $A \times B = \{-1,0\};$ 2) $A \times B = \{(-1,0),(2,-3)\};$ 3) $A \times B = \{(-1,0),(-1,-3),(2,0),(2,-3)\};$ 4) $A \times B = \{(0,-1),(-3,-1),(0,2),(-3,2)\}.$ 10. Число всех подмножеств множества $E=\{5,10,15,20,25,30\}$ равно 1) 6; 2) 30; 3) 32; **4) 64.** Тест по теме «Элементы теории множеств» Вариант 2 1. Математический символ ∅ обозначает: 1) нулевое множество; 2) бесконечное множество;

```
3) пустое множество;
                             4) безэлементное множество.
<u>2.Множество решений уравнения</u> x^2 - x - 12 = 0 записывается:
                            3) {-4,3};
1) (4;-3);
              2) (3:-4);
                                           4){-3,4}.
<u>3.Множество решений неравенства</u> x(x+1) < 0 записывается в виде:
              2)(-\infty;-1) \cup (0;+\infty);
                                           3) (0;1);
                                                         4)(-\infty;0).
1) (-1;0);
4. Правильная запись предложения «X— множество целых чисел, больших -5» - это
                                          3) X=\{x\in Z|x>-5\};
1) X=\{Z|x>-5\};
                     2) X = \{x \in Q | x > -5\};
                                                                4) X = \{x | x \in \mathbb{Z}, x > -5\}.
5. Для множеств A=\{-1,7,9\} и B=\{1,3,8\} справедливы утверждения:
                            3) A \setminus B = \{7,9\};
1) A∩B=Ø;
              2) A=B;
                                                  4) AUB=A.
6. Пересекаются множества чисел:
1) четных и нечетных;
                            2) простых и составных;
3) простых и четных;
                            4) положительных и отрицательных.
7. Пересечение множеств равносторонних и прямоугольных треугольников – это
множество треугольников:
1) равнобедренных;
                            2) пустое множество;
3) разносторонних;
                            4) прямоугольных.
8. Мощность множества B = \{0,1,2,3,5,9,27,38\} равна:
```

4) 38.

4) $A \times B = \{(0,-1),(-3,-1),(0,2),(-3,2)\}.$

1) 0;

1) $A \times B = \{0,-1\};$

2) 8;

3) $A \times B = \{(-1,0),(-1,-3),(2,0),(2,-3)\};$

3) 9:

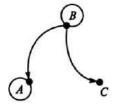
2) $A \times B = \{(0,-1),(-3,2)\};$

<u>9. Декартово произведение множеств $A=\{0,-3\}$ и $B=\{-1,2\}$ — это</u>

1) 7;

2) 19;

3) 120;

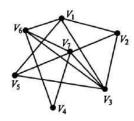

4) 128.

1.3 Типовые практические задания для дифференцированно

		Варианты ответов				
	Условие задачи		2	3	4	5
1	Вычислить 4!	18	12	24	72	Нет нужного ответа
2	Вычислить 4 · 6!+ 8!	192	43200	3600	8640	Нет нужного ответа
3	Вычислить $\frac{16!}{14!}$	156	$\frac{8}{7}$	16	240	Нет нужного ответа
4	Решить уравнение $17! \cdot x - 19! = 18!$	360	37/17	1/17	342	Нет нужного ответа
5	При каком значении п справедливо равенство? $\frac{(n+3)!}{(n+1)!} = 72$	5	4	7	6	Нет нужного ответа
6	У повара имеется 9 видов овощей. Сколько разных салатов можно приготовить, если каждый салат состоит 4 разных овощей.	256	36	81	126	Нет нужного ответа
7	Сколькими способами можно покрасить пять елок в серебристый, зеленый и синий цвета, если количество краски не ограничено, а каждую елку красим только в один цвет?	243	15	6	120	Нет нужного ответа

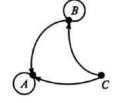
Вариант 1.

- 1. Построить таблицу истинности для логической функции. Используя законы логики, построить СДНФ для исходной функции. ($x \Rightarrow y$) \Rightarrow ($yz \Rightarrow xz$)
- 2. Определить, к каким основным классам принадлежат функции и являются ли указанные системы функций полными: $\{(xy \lor xz \lor yz), x \Rightarrow y, x\}$
- 3. Записать символически на языке логики предикатов следующие предложения, построить их отрицания и перевести полученные высказывания на русский язык:
- а) Все змеи ядовиты.
- b) Никто не желает зла своим детям
- 4. Даны множества: $X=\{1, 2, 3\}, Y=\{2, 4\}, Z=\{3, 5, 7\}$. Найти $X \cup Y \cup Z$; $X \cap Y \cap Z$.
- 5. Методом математической индукции докажите тождества: $\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots$
- 6. Граф G задан диаграммой.
- Составить для него матрицу смежности.
- Построить матрицу инцидентности.
- Указать степени вершин графа.



Вариант 2.

- 1. Построить таблицу истинности для логической функции. Используя законы логики, построить СДНФ для исходной функции. $((x\Rightarrow y)\Rightarrow x)\Rightarrow (x\Rightarrow yx)$
- 2. Определить, к каким основным классам принадлежат функции и являются ли указанные системы функций полными: ${x \neq x \Leftrightarrow yz}$
- 3. Записать символически на языке логики предикатов следующие предложения, построить их отрицания и перевести полученные высказывания на русский язык:
- а) Некоторые студенты учат английский язык.
- b) Некоторые студенты не принимают участие в научной работе
- 4. Данымножества: $A=\{1, 2, 3, 4, 5, 6, 7\}$, $B=\{4, 5, 6\}$. Найти $A \cup B$; $A \cap B$; $A \oplus B$; $A \setminus B$.
- 5. Докажите справедливость формулы для суммы ряда:


$$\frac{1}{1\cdot 4} + \frac{1}{4\cdot 7} + \frac{1}{7\cdot 10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{3n+1}$$

- 6. Граф G задан диаграммой.
- Составить для него матрицу смежности.
- Построить матрицу инцидентности.
- Указать степени вершин графа.

Вариант 3.

- 1. Построить таблицу истинности для логической функции. Используя законы логики, построить СДНФ для исходной функции. $(x+y) \Rightarrow yz$
- 2. Определить, к каким основным классам принадлежат функции и являются ли указанные системы функций полными: $\{0,1,x(y\Leftrightarrow z)\lor x(y+z)\}$
- 3. Записать символически на языке логики предикатов следующие предложения, построить их отрицания и перевести полученные высказывания на русский язык:
- а) Все квадраты ромбы.
- b) Некоторые студенты принимают участие в научной работе
- 4. Даны множества: $A = \{1, 3, 4, 5\}, B = \{2, 4, 5\}.$ Найти $A \square B; A \square B; A \backslash B; B \backslash A.$
- 5. Методом математической индукции докажите тождества: $1 \cdot 2 + 2 \cdot 5 + 3 \cdot 8 + ... + n(3n-1) = n^2(n+1)$
- 6. Граф G задан диаграммой.
- Составить для него матрицу смежности.
- Построить матрицу инцидентности.
- Указать степени вершин графа.

3. ПЕРЕЧЕНЬ МАТЕРИАЛОВ, ОБОРУДОВАНИЯ И ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

3.1 Рекомендуемая литература для разработки оценочных средств и подготовки обучающихся к аттестации

- 1.Спирина М.С., Спирин П.А. Дискретная математика. М.: ОИЦ «Академия». 2015.
- 2.Спирина М.С., Спирин П.А. Дискретная математика. Сборник задач с алгорит-мами решений. –М.: ОИЦ «Академия», 2016.
- 3. www.znanium.com
- 4. Канцедал С.А. Дискретная математика. М., 2007.
- 5. Иванов Б.Н. Дискретная математика. М., 2007.
- 6. Галушкина. Ю.И., Марьямов А.Н. Конспект лекций по дискретной математике. - М., 2007.
- 7. Кочетков П.А. Введение в дискретную математику. М., 2007.